Reaction Kinetics

- Enzyme kinetics: Study of the rates of enzymecatalyzed reaction
- What are the uses of studying kinetics?

What we will cover:

- 1. Kinetics
- 2. Inhibition
- 3. Regulation

Michaelis-Menten Kinetics

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

Three assumptions

- 1. ES is a necessary intermediate step
- 2. k₋₂ is negligible due to small [P]
- 3. Steady state: [ES] is a constant independent on [S] or [P]

M-M equation

1.Finding K_M [E][S]/[ES] = $(k_{-1} + k_2)/k_1$

2.Introduce $[E]_{T}$ [E] = $[E]_{T}$ - [ES]

3. Introduce $V_0 = k_2[ES]$

4. Find V_{max} when [ES] = [E]_T

Meaning of K_{M}

The physiological consequence of K_M in alcohol sensitivity

There are two forms of the AD: a low K_M mitochondrial form and a high K_M cytoplasmic form. What happen to the susceptible people?

Competitive Enzyme Inhibition

- Inhibitors mimic the substrate: compete for the same site.
- The inhibition can be overcome by adding more substrate.
- Often act as drugs: e.g. Statins

Competitive Enzyme Inhibition

Competitive Enzyme Inhibition

Figure 12-8

© 2013 John Wiley & Sons, Inc. All rights reserved. Donald Voet&Judith G. Voet&Charlotte W. Pratt (2016). Fundamentals of biochemistry, binder ready version life at the molecular level Wiley pp.379 https://www.amazon.co.jp/Fundamentals-Biochemistry-Binder-Ready-Version/dp/1118918436/ref=dp_ob_title_bk 2019/6/10

Uncompetitive Enzyme Inhibition

ESI: Enzyme-Substrate-Inhibitor complex: a certain portion of ESI always exists, thus decreases V_{max} - as if some enzymes are kidnapped in ES form! What would happen to K_{M} ?

$$E + S \xrightarrow[k_{-1}]{k_{-1}} ES \xrightarrow[k_{-2}]{k_{-2}} E + P$$

$$K_{M} = (k_{-1} + k_{2})/k_{1}$$

Uncompetitive Enzyme Inhibition

Figure 12-9
© 2013 John Wiley & Sons, Inc. All rights reserved. Donald Voet&Judith G. Voet&Charlotte W. Pratt (2016). Fundamentals of biochemistry, binder ready version life at the molecular level Wiley pp.381
https://www.amazon.co.jp/Fundamentals-Biochemistry-Binder-Ready-Version/dp/1118918436/ref=dp_ob_title_bk 2019/6/10

Mixed and Noncompetitive Enzyme Inhibition

Donald Voet&Judith G. Voet&Charlotte W. Pratt (2016). Fundamentals of biochemistry, binder ready version life at the molecular level Wiley pp.381 https://www.amazon.co.jp/Fundamentals-Biochemistry-Binder-Ready-Version/dp/1118918436/ref=dp_ob_title_bk 2019/6/10

Mixed and Noncompetitive Enzyme Inhibition

CHAPTER 8 Nucleotides and Nucleic Acids

- Nucleic acids are polymers of nucleotides used for:
 - storage of genetic info (DNA)
 - transmission of genetic info (mRNA)
 - processing of genetic information (ribozymes)
 - protein synthesis (tRNA and rRNA)
- Nucleotides are also used in the monomer form for cellular functions:
 - energy for metabolism (ATP)
 - enzyme cofactors (NAD+)
 - signal transduction (cAMP)

Nucleotides and Nucleosides

- Nucleotide =
 - nitrogeneous base
 - pentose
 - phosphate
- Nucleoside =
 - nitrogeneous base
 - pentose
- Carbon AND nitrogen atoms on the nitrogenous base are numbered in cyclic format.
- Carbons of the pentose are designated N' to alleviate confusion.

Figure 8-1 Lehninger Principles of Biochemistry, Seventh Edition © 2017 W.H.Freeman and Company

Phosphate Group

- Negatively charged at neutral pH
- Typically attached to 5' position
 - Nucleic acids are built using the 5'-triphosphates version of the nucleotide.
 - ATP, GTP, TTP, CTP
 - Two of the three phosphates used for building nucleic acids form a leaving group, and completed nucleic acids contain one phosphate moiety per nucleotide.
- May be attached to other positions for specialized function

Nitrogenous Bases

- Derivatives of pyrimidine or purine
- Nitrogen-containing heteroaromatic molecules
- Planar or almost planar structures
- Absorb UV light around 250-270 nm

Figure 8-1(b) Lehninger Principles of Biochemistry, Seventh Edition © 2017 W.H.Freeman and Company

Nitrogenous Bases

- Cytosine, adenine, and guanine are found in both DNA and RNA.
- Thymine is found only in DNA.
- Uracil is found only in RNA.
- All are good H-bond donors and acceptors.
- Neutral molecules at pH 7

Figure 8-2 Lehninger Principles of Biochemistry, Seventh Edition © 2017 W.H.Freeman and Company

Nomenclature

Ribonucleotides

Figure 8-4 Lehninger Principles of Biochemistry, Seventh Edition © 2017 W.H.Freeman and Company

Conformation around N-Glycosidic Bond

• Relatively free rotation can occur around the *N*-glycosidic bond in free nucleotides.

- Angle near 0° corresponds to syn conformation.
- Angle near 180° corresponds to *anti* conformation.
- Anticonformation is found in normal B-DNA.

Tautomerism of Nitrogenous Bases

- Prototropic tautomers are structural isomers that differ in the location of protons.
- Keto-enol tautomerism is common in ketones.
- Lactam-lactim tautomerism occurs in some heterocycles.
- Both tautomers exist in solution, but the lactam forms are predominant at neutral pH.

Tautomeric forms of uracil. The lactam form predominates at pH 7.0; the other forms become more prominent as pH decreases. The other free pyrimidines and the free purines also have tautomeric forms, but they are more rarely encountered.

UV Absorption of Nucleobases

- Absorption of UV light at 250-270 nm is due to $\pi \rightarrow \pi^*$ electronic transitions.
- Excited states of common nucleobases decay rapidly via radiationless transitions.
 - effective
 photoprotection of
 genetic material
 - no fluorescence from nucleic acids

Figure 8-10 Lehninger Principles of Biochemistry, Seventh Edition © 2017 W.H.Freeman and Company

Minor Nucleosides in DNA

- DNA modification
- 5-Methylcytosine: eukaryotes and is also found in bacteria.
- *N*⁶-Methyladenosine: bacteria only
- Epigenetic marker:
 - way to mark own DNA so that cells can degrade foreign DNA (prokaryotes)
 - way to mark which genes should be active (eukaryotes)

Figure 8-5(b) Lehninger Principles of Biochemistry, Seventh Edition $\ensuremath{\mathbb{C}}$ 2017 W.H.Freeman and Company

Minor Nucleosides in RNA

- Inosine is sometimes found in the "wobble position" of the anticodon in tRNA.
 - made by de-aminating adenosine
 - provides richer genetic code
- Pseudouridine (Ψ) is found widely in tRNA and rRNA.
 - more common in eukaryotes but found also in eubacteria
 - made from uridine by enzymatic isomerization after RNA synthesis
 - may stabilize the structure of tRNA
 - may help in folding of rRNA

Figure 8-5(b) Lehninger Principles of Biochemistry, Seventh Edition © 2017 W.H.Freeman and Company

Polynucleotides

- Covalent bonds are formed via phosphodiester linkages.
 - negatively charged backbone
- DNA backbone is fairly stable.
 - DNA from mammoths?
 - Hydrolysis accelerated by enzymes (DNAse)
- RNA backbone is unstable.
 - In water, RNA lasts for a few years.
 - In cells, mRNA is degraded in a few hours.
- Linear polymers
 - no branching or cross-links
- Directionality
 - The 5' end is different from the 3' end.
 - We read the sequence from 5' to 3'.

Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Hydrogen-Bonding Interactions

- Two bases can hydrogen bond to form a base pair.
- For monomers, a large number of base pairs is possible.
- In polynucleotide, only a few possibilities exist.
- Watson-Crick base pairs predominate in double-stranded DNA.
- A pairs with T.
- C pairs with G.
- Purine pairs with pyrimidine.

AT and GC Base Pairs

Watson-Crick Model of B-DNA

The original model proposed by Watson and Crick had 10 base pairs, or 34 Å (3.4 nm), per turn of the helix; subsequent measurements revealed 10.5 base pairs, or 36 Å (3.6 nm), per turn.

- (a) Schematic representation, showing dimensions of the helix.
- (b)Stick representation showing the backbone and stacking of the bases.
- (c) Space-filling model.

Other Forms of DNA

Comparison of A, B, and Z forms of DNA.

- Each structure shown here has 36 base pairs.
- The riboses and bases are shown in yellow.
- The phosphodiester backbone is represented as a blue rope.

Figure 8-17 Lehninger Principles of Biochemistry, Seventh Edition $\ensuremath{\mathbb{C}}$ 2017 W.H.Freeman and Company

Other Forms of DNA

	A form	B form	Z form
Helical sense Diameter Base pairs per	Right handed ∼26 Å	Right handed ∼20 Å	Left handed ~18 Å
helical turn Helix rise per base	11	10.5	12
pair Base tilt normal to	2.6 Å	3.4 Å	3.7 Å
the helix axis	20°	6°	7 °
Sugar pucker conformation	C-3' endo	C-2' endo	C-2' endo for pyrimidines; C-3' endo for purines
Glycosyl bond conformation	Anti	Anti	Anti for pyrimidines; syn for purines

Complementarity of DNA Strands

- Two chains differ in sequence (sequence is read from 5' to 3').
- Two chains are complementary.
- Two chains run antiparallel.

"It has not escaped our notice that the specific pairing

we have postulated immediately suggests a possible

copying mechanism for the genetic material." —Watson and Crick, Nature, 1953

Replication of Genetic Code

- Strand separation occurs first.
- Each strand serves as a template for the synthesis of a new strand.
- Synthesis is catalyzed by enzymes known as DNA polymerases.
- A newly made DNA molecule has one daughter strand and one parent strand.

Messenger RNA: Code Carrier for the Sequence of Proteins

- Is synthesized using DNA template and generally occurs as a single strand
- Contains ribose instead of deoxyribose
- Contains uracil instead of thymine
- One mRNA may code for more than one protein
- Together with transfer RNA (tRNA), transfers genetic information from DNA to proteins

Figure 8-22 Lehninger Principles of Biochemistry, Seventh Edition $\ensuremath{\mathbb{C}}$ 2017 W.H.Freeman and Company

Palindromic Sequences Can Form Hairpins and Cruciforms

Palindromes: words or phases that are the same when

read backward or forward. 🚄

Civic, Racecar, Rotator

Saippuakuppinippukauppias (Finnish word for "soap cup batch trader")

Νίψον ἀνομήματα, μἡ μόναν ὄψιν (ancient Greek: "Wash the sin

as well as the fa

Figure 8-19 (a) (b) Lehninger Principles of Biochemistry, Seventh Edition © 2017 W.H.Freeman and Company

Complex Structures of RNA

Figure 8-24 Lehninger Principles of Biochemistry, Seventh Edition © 2017 W.H.Freeman and Company

Figure 8-25 Lehninger Principles of Biochemistry, Seventh Edition © 2017 W.H.Freeman and Company

DNA Denaturation

- Covalent bonds remain intact.
 - Genetic code remains intact.
- Hydrogen bonds are broken.
 - Two strands separate.
- Base stacking is lost
 - UV absorbance increases.

Denaturation can be induced by high temperature, or change in pH.

Denaturation may be reversible: annealing.

Figure 8-26 Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Thermal DNA Denaturation (Melting)

- DNA exists as double helix at normal temperatures.
- Two DNA strands dissociate at elevated temperatures.
- Two strands re-anneal when the temperature is lowered.
- The reversible thermal denaturation and annealing form the basis for the polymerase chain reaction.
- DNA denaturation is commonly monitored by UV spectrophotometry at 260 nm.

Factors Affecting DNA Denaturation

- The midpoint of melting (T_m) depends on base composition.
 High CG increases T_m.
- $T_{\rm m}$ depends on DNA length.
 - Longer DNA has higher $T_{\rm m}$.
 - It is important for short DNA.
- T_m depends on pH and ionic strength.
 - High salt increases $T_{\rm m}$.

Figure 8-27 Lehninger Principles of Biochemistry, Seventh Edition © 2017 W.H.Freeman and Company

Spontaneous Mutagenesis

Oxidative & Chemical Mutagenesis

- Oxidative damage: hydroxylation of guanine
 - mitochondrial DNA is most susceptible
- Chemical alkylation: methylation of guanine
- Cells have mechanisms to correct most of these

Alkylating agents

Radiation-Induced Mutagenesis

- UV light induces dimerization of pyrimidines; this may be the main mechanism for skin cancers.
- Ionizing radiation (x rays and γ rays) causes ring opening and strand breaking. These are difficult to fix.
- Cells can repair some of these modifications, but others cause mutations. Accumulation of mutations is linked to aging and carcinogenesis.

Figure 8-30(b) Lehninger Principles of Biochemistry, Seventh Edition $\ensuremath{\mathbb{C}}$ 2017 W.H.Freeman and Company

Formation of pyrimidine dimers by UV light

Other Functions of Nucleotides: Energy Source

Abbreviations of ribonucleoside 5'-phosphates				
Base	Mono-	Di-	Tri-	
Adenine	AMP	ADP	ATP	
Guanine	GMP	GDP	GTP	
Cytosine	CMP	CDP	СТР	
Uracil	UMP	UDP	UTP	

Abbreviations of deoxyribonucleoside 5'-phosphates				
Base	Mono-	Di-	Tri-	
Adenine	dAMP	dADP	dATP	
Guanine	dGMP	dGDP	dGTP	
Cytosine	dCMP	dCDP	dCTP	
Thymine	dTMP	dTDP	dTTP	

Figure 8-39 Lehninger Principles of Biochemistry, Seventh Edition © 2017 W.H.Freeman and Company

Nucleoside phosphates

- General structure of the nucleoside 5'-mono-, di-, and triphosphates (NMPs, NDPs, and NTPs) and their standard abbreviations.
- In the deoxyribonucleoside phosphates (dNMPs, dNDPs, and dNTPs), the pentose is 2'-deoxy-D-ribose.

Other Functions of Nucleotides: Coenzymes

Nicotinamide adenine dinucleotide (NAD⁺)

Flavin adenine dinucleotide (FAD)

Figure 8-41 Lehninger Principles of Biochemistry, Seventh Edition © 2017 W.H.Freeman and Company

Other Functions of Nucleotides:

Regulatory Molecules

Tools to Study Genes

Topics	Team 1	Team 2
gene editing	Cindy & Olivia	Catherine & Nadia
Recombinant DNA	Moeri & Buddhini	Yu Min & Yam
RNA interference	Ronny & Anh	Yui & Kazuma
PCR	Viet & Ryuki	Steve & Chee Ming
DNA sequencing	Bach & Hayato	Maydelene & Poh

- Recombinant DNA & Cloning
- Gene editing (e.g. CRISPR)
- RNA interference
- DNA Sequencing
- PCR